Local Feature Weighting in Nearest Prototype Classification

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Class Dependent Feature Weighting and K-Nearest Neighbor Classification

Feature weighting in supervised learning concerns the development of methods for quantifying the capability of features to discriminate instances from different classes. A popular method for this task, called RELIEF, generates a feature weight vector from a given training set, one weight for each feature. This is achieved by maximizing in a greedy way the sample margin defined on the nearest ne...

متن کامل

Target Neighbor Consistent Feature Weighting for Nearest Neighbor Classification

We consider feature selection and weighting for nearest neighbor classifiers. Atechnical challenge in this scenario is how to cope with discrete update of nearestneighbors when the feature space metric is changed during the learning process.This issue, called the target neighbor change, was not properly addressed in theexisting feature weighting and metric learning literature. I...

متن کامل

Soft nearest prototype classification

We propose a new method for the construction of nearest prototype classifiers which is based on a Gaussian mixture ansatz and which can be interpreted as an annealed version of learning vector quantization (LVQ). The algorithm performs a gradient descent on a cost-function minimizing the classification error on the training set. We investigate the properties of the algorithm and assess its perf...

متن کامل

An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

متن کامل

The Utility of Feature Weighting in Nearest-Neighbor Algorithms

Nearest-neighbor algorithms are known to depend heavily on their distance metric. In this paper, we investigate the use of a weighted Euclidean metric in which the weight for each feature comes from a small set of options. We describe Diet, an algorithm that directs search through a space of discrete weights using cross-validation error as its evaluation function. Although a large set of possib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Neural Networks

سال: 2008

ISSN: 1045-9227,1941-0093

DOI: 10.1109/tnn.2007.902955